Hovedtekniske parametere
prosjekt | karakteristisk | ||
temperaturområde | -40~+85℃ | ||
Nominell driftsspenning | 2,7V | ||
Kapasitansområde | -10%~+30%(20℃) | ||
temperaturkarakteristikker | Kapasitans endringshastighet | |△c/c(+20℃)|≤30% | |
ESR | Mindre enn 4 ganger den angitte verdien (i et miljø på -25 °C) | ||
Varighet | Etter kontinuerlig påføring av nominell spenning (2,7 V) ved +85 °C i 1000 timer, og når temperaturen går tilbake til 20 °C for testing, er følgende punkter oppfylt. | ||
Kapasitans endringshastighet | Innenfor ±30 % av startverdien | ||
ESR | Mindre enn 4 ganger den opprinnelige standardverdien | ||
Høytemperaturlagringsegenskaper | Etter 1000 timer uten belastning ved +85 °C, når den går tilbake til 20 °C for testing, er følgende punkter oppfylt | ||
Kapasitans endringshastighet | Innenfor ±30 % av startverdien | ||
ESR | Mindre enn 4 ganger den opprinnelige standardverdien | ||
Fuktighetsbestandighet | Etter å ha påført nominell spenning kontinuerlig i 500 timer ved +25 ℃ 90 % RF, når temperaturen går tilbake til 20 ℃ for testing, må følgende punkter overholdes er møtt | ||
Kapasitans endringshastighet | Innenfor ±30 % av startverdien | ||
ESR | Mindre enn 3 ganger den opprinnelige standardverdien |
Produktdimensjonstegning
LW6 | a=1,5 |
L>16 | a=2,0 |
D | 8 | 10 | 12,5 | 16 | 18 |
d | 0,6 | 0,6 | 0,6 | 0,8 | 0,8 |
F | 3,5 | 5 | 5 | 7,5 | 7,5 |
Superkondensatorer: Ledende innen fremtidens energilagring
Introduksjon:
Superkondensatorer, også kjent som superkondensatorer eller elektrokjemiske kondensatorer, er høyytelses energilagringsenheter som skiller seg betydelig fra tradisjonelle batterier og kondensatorer. De kan skryte av ekstremt høy energi- og effekttetthet, rask lade- og utladningskapasitet, lang levetid og utmerket syklusstabilitet. Kjernen i superkondensatorer ligger den elektriske dobbeltsjikts- og Helmholtz-dobbeltsjikts-kapasitansen, som bruker ladningslagring på elektrodeoverflaten og ionbevegelse i elektrolytten for å lagre energi.
Fordeler:
- Høy energitetthet: Superkondensatorer tilbyr høyere energitetthet enn tradisjonelle kondensatorer, noe som gjør dem i stand til å lagre mer energi i et mindre volum, noe som gjør dem til en ideell energilagringsløsning.
- Høy effekttetthet: Superkondensatorer har enestående effekttetthet, i stand til å frigjøre store mengder energi på kort tid, egnet for høyeffektsapplikasjoner som krever raske lade- og utladningssykluser.
- Rask lading og utlading: Sammenlignet med konvensjonelle batterier har superkondensatorer raskere lade- og utladingshastigheter, og fullfører ladingen i løpet av sekunder, noe som gjør dem egnet for applikasjoner som krever hyppig lading og utlading.
- Lang levetid: Superkondensatorer har en lang sykluslevetid, og kan gjennomgå titusenvis av lade- og utladningssykluser uten ytelsesforringelse, noe som forlenger levetiden betydelig.
- Utmerket syklusstabilitet: Superkondensatorer viser utmerket syklusstabilitet, opprettholder stabil ytelse over lengre bruksperioder, noe som reduserer hyppigheten av vedlikehold og utskifting.
Bruksområder:
- Energigjenvinnings- og lagringssystemer: Superkondensatorer finner omfattende bruksområder i energigjenvinnings- og lagringssystemer, for eksempel regenerativ bremsing i elektriske kjøretøy, energilagring i strømnettet og lagring av fornybar energi.
- Strømforsyning og kompensasjon for toppeffekt: Superkondensatorer brukes til å gi kortsiktig høy effekt, og brukes i scenarier som krever rask strømforsyning, for eksempel oppstart av store maskiner, akselerasjon av elektriske kjøretøy og kompensasjon for toppeffektbehov.
- Forbrukerelektronikk: Superkondensatorer brukes i elektroniske produkter for reservestrøm, lommelykter og energilagringsenheter, og gir rask energiutløsning og langvarig reservestrøm.
- Militære anvendelser: I militærsektoren brukes superkondensatorer i strømforsynings- og energilagringssystemer for utstyr som ubåter, skip og jagerfly, og gir stabil og pålitelig energistøtte.
Konklusjon:
Som høyytelses energilagringsenheter tilbyr superkondensatorer fordeler som høy energitetthet, høy effekttetthet, rask lade- og utladekapasitet, lang levetid og utmerket syklusstabilitet. De er mye brukt innen energigjenvinning, strømforsyning, forbrukerelektronikk og militærsektoren. Med kontinuerlig teknologisk utvikling og utvidede bruksscenarier er superkondensatorer klare til å lede fremtidens energilagring, drive energiomstillingen og forbedre energiutnyttelseseffektiviteten.
Produktnummer | Arbeidstemperatur (℃) | Nominell spenning (V.DC) | Kapasitans (F) | Diameter D(mm) | Lengde L (mm) | ESR (mΩmax) | 72 timers lekkasjestrøm (μA) | Levetid (timer) |
SDH2R7L1050812 | -40~85 | 2.7 | 1 | 8 | 11,5 | 200 | 3 | 1000 |
SDH2R7L2050813 | -40~85 | 2.7 | 2 | 8 | 13 | 150 | 4 | 1000 |
SDH2R7L3350820 | -40~85 | 2.7 | 3.3 | 8 | 20 | 90 | 6 | 1000 |
SDH2R7L5051020 | -40~85 | 2.7 | 5 | 10 | 20 | 70 | 10 | 1000 |
SDH2R7L7051020 | -40~85 | 2.7 | 7 | 10 | 20 | 60 | 14 | 1000 |
SDH2R7L1061030 | -40~85 | 2.7 | 10 | 10 | 30 | 50 | 20 | 1000 |
SDH2R7L1561325 | -40~85 | 2.7 | 15 | 12,5 | 25 | 40 | 30 | 1000 |
SDH2R7L2561625 | -40~85 | 2.7 | 25 | 16 | 25 | 30 | 50 | 1000 |
SDH2R7L5061840 | -40~85 | 2.7 | 50 | 18 | 40 | 25 | 100 | 1000 |
SDH2R7L7061850 | -40~85 | 2.7 | 70 | 18 | 50 | 20 | 140 | 1000 |