Hoved tekniske parametere
prosjekt | karakteristisk | |
temperaturområde | -20~+85 ℃ | |
Nominell driftsspenning | 3,8V-2,5V, maksimal ladespenning: 4,2V | |
Kapasitansområde | -10 %~+30 % (20 ℃) | |
Varighet | Etter kontinuerlig påføring av merkespenningen (3,8V) ved +85°C i 1000 timer, ved retur til 20°C fortesting, er følgende elementer oppfylt | |
Kapasitansendringer | Innenfor ±30 % av startverdien | |
ESR | Mindre enn 4 ganger den opprinnelige standardverdien | |
Oppbevaringsegenskaper ved høy temperatur | Etter 1000 timers lagring uten last ved +85 °C, når du går tilbake til 20 °C for testing, er følgende punkter oppfylt | |
Kapasitansendringer | Innenfor ±30 % av startverdien | |
ESR | Mindre enn 4 ganger den opprinnelige standardverdien |
Produktdimensjonal tegning
a=1,0
D | 3,55 | 4 | 5 | 6.3 |
d | 0,45 | 0,45 | 0,5 | 0,5 |
F | 1.1 | 1.5 | 2 | 2.5 |
Hovedformålet
♦Elektronisk armbånd
♦Trådløse øretelefoner, høreapparater
♦Bluetooth termometer
♦Penn for berøringsskjerm, fjernkontrollpenn for mobiltelefon
♦Smart dimmende solbriller, elektroniske tobruksbriller for langsynthet og nærsynthet
♦Bærbart elektronisk terminalutstyr, trådløst kommunikasjonsutstyr, IoT-terminaler og andre små enheter
Lithium-ion kondensatorer (LICs)er en ny type elektronisk komponent med en struktur og et arbeidsprinsipp som er forskjellig fra tradisjonelle kondensatorer og litiumionbatterier. De utnytter bevegelsen av litiumioner i en elektrolytt for å lagre ladning, og tilbyr høy energitetthet, lang sykluslevetid og raske ladningsutladningsevner. Sammenlignet med konvensjonelle kondensatorer og litium-ion-batterier har LIC-er høyere energitetthet og raskere lade-utladningshastigheter, noe som gjør dem ansett som et betydelig gjennombrudd i fremtidig energilagring.
Søknader:
- Elektriske kjøretøy (EV): Med den økende globale etterspørselen etter ren energi, er LIC-er mye brukt i kraftsystemene til elektriske kjøretøy. Deres høye energitetthet og raske lade-utladningsegenskaper gjør at elbiler kan oppnå lengre kjørerekkevidder og raskere ladehastigheter, noe som akselererer bruken og spredningen av elektriske kjøretøy.
- Lagring av fornybar energi: LIC-er brukes også til lagring av sol- og vindenergi. Ved å konvertere fornybar energi til elektrisitet og lagre den i LIC-er oppnås effektiv utnyttelse og stabil energiforsyning, noe som fremmer utvikling og anvendelse av fornybar energi.
- Mobile elektroniske enheter: På grunn av deres høye energitetthet og raske lade-utladningsmuligheter, brukes LIC-er mye i mobile elektroniske enheter som smarttelefoner, nettbrett og bærbare elektroniske dingser. De gir lengre batterilevetid og raskere ladehastigheter, og forbedrer brukeropplevelsen og portabiliteten til mobile elektroniske enheter.
- Energilagringssystemer: I energilagringssystemer brukes LIC-er for lastbalansering, toppbarbering og for å gi reservekraft. Deres raske respons og pålitelighet gjør LIC-er til et ideelt valg for energilagringssystemer, noe som forbedrer nettets stabilitet og pålitelighet.
Fordeler fremfor andre kondensatorer:
- Høy energitetthet: LIC-er har høyere energitetthet enn tradisjonelle kondensatorer, noe som gjør dem i stand til å lagre mer elektrisk energi i et mindre volum, noe som resulterer i mer effektiv energiutnyttelse.
- Rask lade-utladning: Sammenlignet med litiumion-batterier og konvensjonelle kondensatorer, tilbyr LIC-er raskere lade-utladningshastigheter, noe som muliggjør raskere lading og utlading for å møte etterspørselen etter høyhastighetslading og høy effekt.
- Lang syklusliv: LIC-er har en lang sykluslevetid, og kan gjennomgå tusenvis av lade-utladingssykluser uten ytelsesforringelse, noe som resulterer i forlenget levetid og lavere vedlikeholdskostnader.
- Miljøvennlighet og sikkerhet: I motsetning til tradisjonelle nikkel-kadmium-batterier og litium-koboltoksid-batterier, er LIC-er fri for tungmetaller og giftige stoffer, og viser høyere miljøvennlighet og sikkerhet, og reduserer dermed miljøforurensning og risiko for batterieksplosjoner.
Konklusjon:
Som en ny energilagringsenhet har litiumionkondensatorer store applikasjonsmuligheter og betydelig markedspotensial. Deres høye energitetthet, raske lade-utladningsevner, lange sykluslevetid og miljøsikkerhetsfordeler gjør dem til et avgjørende teknologisk gjennombrudd i fremtidig energilagring. De er klar til å spille en viktig rolle i å fremme overgangen til ren energi og forbedre energiutnyttelseseffektiviteten.
Produktnummer | Arbeidstemperatur (℃) | Nominell spenning (VDC) | Kapasitans (F) | Bredde (mm) | Diameter (mm) | Lengde (mm) | Kapasitet (mAH) | ESR (mΩmax) | 72 timers lekkasjestrøm (μA) | Liv (timer) |
SLX3R8L1550307 | -20~85 | 3.8 | 1.5 | - | 3,55 | 7 | 0,5 | 8000 | 2 | 1000 |
SLX3R8L3050409 | -20~85 | 3.8 | 3 | - | 4 | 9 | 1 | 5000 | 2 | 1000 |
SLX3R8L4050412 | -20~85 | 3.8 | 4 | - | 4 | 12 | 1.4 | 4000 | 2 | 1000 |
SLX3R8L5050511 | -20~85 | 3.8 | 4 | - | 5 | 11 | 1.8 | 2000 | 2 | 1000 |
SLX3R8L1060611 | -20~85 | 3.8 | 10 | - | 6.3 | 11 | 3.6 | 1500 | 2 | 1000 |