Hovedtekniske parametere
prosjekt | karakteristisk | ||
temperaturområde | -40~+70℃ | ||
Nominell driftsspenning | 2,7 V, 3,0 V | ||
Kapasitansområde | -10%~+30%(20℃) | ||
temperaturkarakteristikker | Kapasitans endringshastighet | |△c/c(+20℃)≤30% | |
ESR | Mindre enn 4 ganger den angitte verdien (i et miljø på -25 °C) | ||
Varighet | Etter kontinuerlig påføring av nominell spenning på +70 °C i 1000 timer, og når temperaturen går tilbake til 20 °C for testing, er følgende punkter oppfylt. | ||
Kapasitans endringshastighet | Innenfor ±30 % av startverdien | ||
ESR | Mindre enn 4 ganger den opprinnelige standardverdien | ||
Høytemperaturlagringsegenskaper | Etter 1000 timer uten belastning ved +70 °C, når den går tilbake til 20 °C for testing, er følgende punkter oppfylt | ||
Kapasitans endringshastighet | Innenfor ±30 % av startverdien | ||
ESR | Mindre enn 4 ganger den opprinnelige standardverdien | ||
Fuktighetsbestandighet | Etter å ha påført nominell spenning kontinuerlig i 500 timer ved +25 ℃ 90 % RF, når temperaturen går tilbake til 20 ℃ for testing, må følgende punkter overholdes | ||
Kapasitans endringshastighet | Innenfor ±30 % av startverdien | ||
ESR | Mindre enn 3 ganger den opprinnelige standardverdien |
Produktdimensjonstegning
Enhet: mm
Superkondensatorer: Ledende innen fremtidens energilagring
Introduksjon:
Superkondensatorer, også kjent som superkondensatorer eller elektrokjemiske kondensatorer, er høyytelses energilagringsenheter som skiller seg betydelig fra tradisjonelle batterier og kondensatorer. De kan skryte av ekstremt høy energi- og effekttetthet, rask lade- og utladningskapasitet, lang levetid og utmerket syklusstabilitet. Kjernen i superkondensatorer ligger den elektriske dobbeltsjikts- og Helmholtz-dobbeltsjikts-kapasitansen, som bruker ladningslagring på elektrodeoverflaten og ionbevegelse i elektrolytten for å lagre energi.
Fordeler:
- Høy energitetthet: Superkondensatorer tilbyr høyere energitetthet enn tradisjonelle kondensatorer, noe som gjør dem i stand til å lagre mer energi i et mindre volum, noe som gjør dem til en ideell energilagringsløsning.
- Høy effekttetthet: Superkondensatorer har enestående effekttetthet, i stand til å frigjøre store mengder energi på kort tid, egnet for høyeffektsapplikasjoner som krever raske lade- og utladningssykluser.
- Rask lading og utlading: Sammenlignet med konvensjonelle batterier har superkondensatorer raskere lade- og utladingshastigheter, og fullfører ladingen i løpet av sekunder, noe som gjør dem egnet for applikasjoner som krever hyppig lading og utlading.
- Lang levetid: Superkondensatorer har en lang sykluslevetid, og kan gjennomgå titusenvis av lade- og utladningssykluser uten ytelsesforringelse, noe som forlenger levetiden betydelig.
- Utmerket syklusstabilitet: Superkondensatorer viser utmerket syklusstabilitet, opprettholder stabil ytelse over lengre bruksperioder, noe som reduserer hyppigheten av vedlikehold og utskifting.
Bruksområder:
- Energigjenvinnings- og lagringssystemer: Superkondensatorer finner omfattende bruksområder i energigjenvinnings- og lagringssystemer, for eksempel regenerativ bremsing i elektriske kjøretøy, energilagring i strømnettet og lagring av fornybar energi.
- Strømforsyning og kompensasjon for toppeffekt: Superkondensatorer brukes til å gi kortsiktig høy effekt, og brukes i scenarier som krever rask strømforsyning, for eksempel oppstart av store maskiner, akselerasjon av elektriske kjøretøy og kompensasjon for toppeffektbehov.
- Forbrukerelektronikk: Superkondensatorer brukes i elektroniske produkter for reservestrøm, lommelykter og energilagringsenheter, og gir rask energiutløsning og langvarig reservestrøm.
- Militære anvendelser: I militærsektoren brukes superkondensatorer i strømforsynings- og energilagringssystemer for utstyr som ubåter, skip og jagerfly, og gir stabil og pålitelig energistøtte.
Konklusjon:
Som høyytelses energilagringsenheter tilbyr superkondensatorer fordeler som høy energitetthet, høy effekttetthet, rask lade- og utladekapasitet, lang levetid og utmerket syklusstabilitet. De er mye brukt innen energigjenvinning, strømforsyning, forbrukerelektronikk og militærsektoren. Med kontinuerlig teknologisk utvikling og utvidede bruksscenarier er superkondensatorer klare til å lede fremtidens energilagring, drive energiomstillingen og forbedre energiutnyttelseseffektiviteten.
Produktnummer | Arbeidstemperatur (℃) | Nominell spenning (V.DC) | Kapasitans (F) | Diameter D(mm) | Lengde L (mm) | ESR (mΩmax) | 72 timers lekkasjestrøm (μA) | Levetid (timer) |
SDN2R7S1072245 | -40~70 | 2.7 | 100 | 22 | 45 | 12 | 160 | 1000 |
SDN2R7S1672255 | -40~70 | 2.7 | 160 | 22 | 55 | 10 | 200 | 1000 |
SDN2R7S1872550 | -40~70 | 2.7 | 180 | 25 | 50 | 8 | 220 | 1000 |
SDN2R7S2073050 | -40~70 | 2.7 | 200 | 30 | 50 | 6 | 240 | 1000 |
SDN2R7S2473050 | -40~70 | 2.7 | 240 | 30 | 50 | 6 | 260 | 1000 |
SDN2R7S2573055 | -40~70 | 2.7 | 250 | 30 | 55 | 6 | 280 | 1000 |
SDN2R7S3373055 | -40~70 | 2.7 | 330 | 30 | 55 | 4 | 320 | 1000 |
SDN2R7S3673560 | -40~70 | 2.7 | 360 | 35 | 60 | 4 | 340 | 1000 |
SDN2R7S4073560 | -40~70 | 2.7 | 400 | 35 | 60 | 3 | 400 | 1000 |
SDN2R7S4773560 | -40~70 | 2.7 | 470 | 35 | 60 | 3 | 450 | 1000 |
SDN2R7S5073565 | -40~70 | 2.7 | 500 | 35 | 65 | 3 | 500 | 1000 |
SDN2R7S6073572 | -40~70 | 2.7 | 600 | 35 | 72 | 2,5 | 550 | 1000 |
SDN3R0S1072245 | -40~65 | 3 | 100 | 22 | 45 | 12 | 160 | 1000 |
SDN3R0S1672255 | -40~65 | 3 | 160 | 22 | 55 | 10 | 200 | 1000 |
SDN3R0S1872550 | -40~65 | 3 | 180 | 25 | 50 | 8 | 220 | 1000 |
SDN3R0S2073050 | -40~65 | 3 | 200 | 30 | 50 | 6 | 240 | 1000 |
SDN3R0S2473050 | -40~65 | 3 | 240 | 30 | 50 | 6 | 260 | 1000 |
SDN3R0S2573055 | -40~65 | 3 | 250 | 30 | 55 | 6 | 280 | 1000 |
SDN3R0S3373055 | -40~65 | 3 | 330 | 30 | 55 | 4 | 320 | 1000 |
SDN3R0S3673560 | -40~65 | 3 | 360 | 35 | 60 | 4 | 340 | 1000 |
SDN3R0S4073560 | -40~65 | 3 | 400 | 35 | 60 | 3 | 400 | 1000 |
SDN3R0S4773560 | -40~65 | 3 | 470 | 35 | 60 | 3 | 450 | 1000 |
SDN3R0S5073565 | -40~65 | 3 | 500 | 35 | 65 | 3 | 500 | 1000 |
SDN3R0S6073572 | -40~65 | 3 | 600 | 35 | 72 | 2,5 | 550 | 1000 |